US009354689B2

a2 United States Patent

Bhandaru et al.

US 9,354,689 B2
May 31, 2016

(10) Patent No.:
(45) Date of Patent:

(54) PROVIDING ENERGY EFFICIENT TURBO (56) References Cited
OPERATION OF A PROCESSOR
U.S. PATENT DOCUMENTS
(75) Inventors: Malini K Bhandaru, Sudbury, MA 5163153 A 11/1992 Cole et al.
(US); Eric J. Dehaemer, Shrewsbury, 5,522,087 A 5/1996 Hsiang
MA (US) 5,590,341 A 12/1996 Matter
5,621,250 A 4/1997 Kim
H . ; 5,931,950 A 8/1999 Hsu
(73) Assignee: g}tse)l Corporation, Santa Clara, CA 6.748.546 BI 6/2004 Mirov cf al.
6,792,392 Bl 9/2004 Knight
6,823,516 B1 11/2004 Cooper
(*) Notice: Subject to any disclaimer, the term of this 6,829,713 B2 12/2004 Cooper et al.
patent is extended or adjusted under 35 ?g?g’%g E% %gggg i/l{ngh
U.S.C. 154(b) by 312 days. e a
(Continued)
(21) Appl. No.: 13/997,288
FOREIGN PATENT DOCUMENTS
(22) PCT Filed: Mar. 13,2012 Ep 1282030 AL 5/2003
(86) PCT No.: PCT/US2012/028865 OTHER PUBLICATIONS
§ 371 (c)(1), U.S. Patent and Trademark Office, Office Action mailed Aug. 5,2014
(2), (4) Date: ~ Jun. 24, 2013 in U.S. Appl. No. 13/600,568, with Reply to Office Action filed on
Oct. 29, 2014.
(87) PCT Pub. No.: W0O2013/137859 (Continued)
PCT Pub. Date: Sep. 19, 2013
Primary Examiner — Zahid Choudhury
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Trop, Pruner & Hu, P.C.
US 2013/0346774 Al Dec. 26, 2013 (57) ABSTRACT
(51) Int.CL In one embodiment, a multicore processor includes cores that
GO6F 1/32 (2006.01) can independently execute instructions, each at an.indepen-
(52) US.Cl dent voltage 1alnd 1frequenlcy. The processor IIinay 1nclu151e a
S) power controller having logic to prevent a first core from
CPC s G026 (ﬁ 31/3 12 3'4Y(022(}31 363/11)2’]G70§€ 113/ 30214 execution at a requested turbo mode frequency if the first core
U : as a stall rate greater than a first stall threshold, and concur-
_ _(@o13.01) () h 1l rate greater than a first stall threshold, and
(58) Field of Classification Search rently allow a second core to execute at a requested turbo

CPC ... GOG6F 1/3202; GO6F 1/3231; GOGF 1/26;
GOG6F 1/206; GOGF 1/3228; GOGF 1/08;
GOG6F 1/3289; GOGF 1/266; HO4L 12/12;
HO04L 12/10
See application file for complete search history.

mode frequency if the second core has a stall rate less than a
second stall threshold. Other embodiments are described and

claimed.

17 Claims, 8 Drawing Sheets

US 9,354,689 B2
Page 2

(56)

7,043,649

7,093,147

7,111,179

7,194,643

7,272,730

7412,611

7,412,615

7,434,073

7,437,270

7,454,632

7,529,956

7,539,885

7,596,705

7,730,340

8,429,441

8,438,359

8,463,973

8,560,869
2001/0044909
2002/0194509
2003/0061383
2004/0025069
2004/0064752
2004/0098560
2004/0139356
2004/0268166
2005/0022038
2005/0033881
2005/0132238
2006/0050670
2006/0053326
2006/0059286
2006/0069936
2006/0117202
2006/0184287
2007/0005995
2007/0016817
2007/0033425
2007/0079294
2007/0106827
2007/0156992
2007/0214342
2007/0239398
2007/0245163
2008/0005592
2008/0028240
2008/0162972
2008/0250260
2009/0006871
2009/0150695
2009/0150696
2009/0158061
2009/0158067
2009/0172375
2009/0172428
2009/0235105
2010/0064162
2010/0115304
2010/0115309
2010/0138675
2010/0146513
2010/0191997
2011/0138388
2011/0154090
2011/0161683
2011/0258477
2012/0054515
2012/0072750
2012/0079290
2012/0246506
2013/0061064

References Cited

U.S. PATENT DOCUMENTS

B2
B2
Bl
B2
Bl
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

*

5/2006
8/2006
9/2006
3/2007
9/2007
8/2008
8/2008
10/2008
10/2008
11/2008
5/2009
5/2009
9/2009
6/2010
4/2013
5/2013
6/2013
10/2013
11/2001
12/2002
3/2003
2/2004
4/2004
5/2004
7/2004
12/2004
1/2005
2/2005
6/2005
3/2006
3/2006
3/2006
3/2006
6/2006
8/2006
1/2007
1/2007
2/2007
4/2007
5/2007
7/2007
9/2007
10/2007
10/2007
1/2008
1/2008
7/2008
10/2008
1/2009
6/2009
6/2009
6/2009
6/2009
7/2009
7/2009
9/2009
3/2010
5/2010
5/2010
6/2010
6/2010
7/2010
6/2011
6/2011
6/2011
10/2011
3/2012
3/2012
3/2012
9/2012
3/2013

Terrell

Farkas et al.
Girson et al.
Gonzalez et al.
Acquaviva et al.
Tipley

Yokota et al.
Magklis

Song et al.
Kardach et al.
Stufflebeam
Ma

Kim

Hu et al.
Baker et al.
Kasahara et al.
Naffziger et al.
Allarey

Oh et al.
Plante et al.
Zilka

Gary et al.

Kazachinsky et al.

Storvik et al.
Ma

Farkas et al.
Kaushik et al.
Yao

Nanja
Hillyard et al.
Naveh
Bertone et al.
Lint et al.
Magklis et al.
Belady et al.
Kardach et al.
Albonesi et al.
Clark
Knight
Boatright et al.
Jahagirdar
Newburn
Song et al.
Luetal.
Allarey et al.
Arai et al.

Liu et al.
Tomita

Livetal.ccoe.e.

Song et al.
Song et al.
Schmitz et al.
Bodas et al.
Rotem et al.
Lee

Branover et al.
Rotem et al.
Finkelstein et al.
Carvalho et al.
Nikazm et al.
Song

Dodeja et al.
Wells et al.
Dixon et al.
Zou et al.
Baker et al.
Naffziger et al.
Jahagirdar et al.
Kumar

Knight

Ananthakrishnan et al.

713/320

...... 713/300

2013/0080803 Al 3/2013 Ananthakrishnan et al.
2013/0080804 Al 3/2013 Ananthakrishnan et al.
2013/0111120 Al 5/2013 Ananthakrishnan et al.
2013/0111121 Al 5/2013 Ananthakrishnan et al.
2013/0111226 Al 5/2013 Ananthakrishnan et al.
2013/0111236 Al 5/2013 Ananthakrishnan et al.
2014/0068284 Al 3/2014 Bhandru et al.
2014/0068290 Al 3/2014 Bhandaru et al.
2014/0195829 Al 7/2014 Bhandaru et al.
2014/0208141 Al 7/2014 Bhandaru et al.
OTHER PUBLICATIONS

Intel Developer Forum, IDF2010, Opher Kahn, et al., “Intel Next
Generation Microarchitecture Codename Sandy Bridge: New Pro-
cessor Innovations,” Sep. 13, 2010, 58 pages.

SPEC-Power and Performance, Design Overview V1.10, Standard
Performance Information Corp., Oct. 21, 2008, 6 pages.

Intel Technology Journal, “Power and Thermal Management in the
Intel Core Duo Processor,” May 15, 2006, pp. 109-122.

Anoop Iyer, et al., “Power and Performance Evaluation of Globally
Asynchronous Locally Synchronous Processors,” 2002, pp. 1-11.
Greg Semeraro, et al., “Hiding Synchronization Delays in a GALS
Processor Microarchitecture,” 2004, pp. 1-13.

Joan-Manuel Parcerisa, et al., “Efficient Interconnects for Clustered
Microarchitectures,” 2002, pp. 1-10.

Grigorios Magklis, et al., “Profile-Based Dynamic Voltage and Fre-
quency Scalling for a Multiple Clock Domain Microprocessor,”
2003, pp. 1-12.

Greg Semeraro, et al., “Dynamic Frequency and Voltage Control for
a Multiple Clock Domain Architecture,” 2002, pp. 1-12.

Greg Semeraro, “Energy-Efficient Processor Design Using Multiple
Clock Domains with Dynamic Voltage and Frequency Scaling,”
2002, pp. 29-40.

Diana Marculescu, “Application Adaptive Energy Efficient Clustered
Architectures,” 2004, pp. 344-349.

L. Benini, et al., “System-Level Dynamic Power Management,”
1999, pp. 23-31.

Ravindra Jejurikar, et al., “Leakage Aware Dynamic Voltage Scaling
for Real-Time Embedded Systems,” 2004, pp. 275-280.

Ravindra Jejurikar, et al., “Dynamic Slack Reclamation With Pro-
crastination Scheduling in Real-Time Embedded Systems,” 2005, pp.
13-17.

R. Todling, et al., “Some Strategies for Kalman Filtering and Smooth-
ing,” 1996, pp. 1-21.

R.E. Kalman, “A New Approach to Linear Filtering and Prediction
Problems,” 1960, pp. 1-12.

International Application No. PCT/US2012/028865, filed Mar. 13,
2012, entitled “Providing Efficient Turbo Operation of a Processor,”
by Intel Corporation.

International Application No. PCT/US2012/028902, filed Mar. 13,
2012, entitled “Dynamically Controlling Interconnect Frequency in a
Processor,” by Intel Corporation.

International Application No. PCT/US2012/028876, filed Mar. 13,
2012, entitled “Dynamically Computing an Electrical Design Point
(EDP) for a Multicore Processor,” by Intel Corporation.
International Searching Authority, “Notification of Transmittal of the
International Search Report and the Written Opinion of the Interna-
tional Searching Authority,” mailed Nov. 28, 2012, in International
application No. PCT/US2012/028865.

U.S. Patent and Trademark Office, Reply to Office Action filed Sep.
22,2015 in U.S. Appl. No. 13/997,757.

Microsoft Press Publisher, Microsoft Computer Dictionary,
Microsoft Press, Mar. 15,2002, ISBN-13: 978-0-7356-1495-6; ISBN
10: 0-7356-1495-4, pp. 1-8.

U.S. Patent and Trademark Office, Office Action mailed Jun. 10, 2015
and Reply filed Sep. 10, 2015, in U.S. Appl. No. 13/997,386.

U.S. Patent and Trademark Office, Office Action mailed Jun. 23,
2015, in U.S. Appl. No. 13/997,757.

* cited by examiner

U.S. Patent May 31, 2016 Sheet 1 of 8 US 9,354,689 B2
100
110
Core
CAS
122, | FIVR
125a
CSS
124,
120a
Core - EIVR
CAS 125n
122,
CSS External VR Power
124, 160 —1 Supply
- 150
\
120n
FIVR
125x
IF PCle IF IMC
132 134 136

FIG. 1

U.S. Patent

May 31, 2016

Sheet 2 of 8

US 9,354,689 B2

00

Core
In Turbo
Mode?

Are
Core Active
Cycles Greater Than
Minimum

hreshold? 315

Obtain Current Performance State,
Core Stall Count And Energy
Performance Bias

220

Core Stall Count Greater

Than Or Equal To First Stall
Threshold?

230

Core Stall Count Less Than

240
y

Reduce Current
Performance State Based
On Energy Performance
Bias to Obtain Candidate
Performance State

Or Equal To Second Stall
Threshold?

250

Obtain Candidate Performance State
From Current Performance State
270

Increase Current
Performance State Based
On Energy Performance
Bias to Obtain Candidate
Performance State

260

Determine Updated Performance
State Based On Candidate
Performance State And Processor

Constraint Parameters 280

Apply Updated Performance
State To Core

290

FIG. 2

U.S. Patent

PO1—

Frequency

P1

Performance Bias

¥

'\Energy Bias
Balanced Bias

T >
123

Time

Turbo Increase

May 31, 2016

Sheet 3 of 8 US 9,354,689 B2

Energy Bias

PO1—
I

Performance Bias
Frequency

<«—Balanced Bias
T >
123
Time
Turbo Decrease

P1

FIG. 3

U.S. Patent May 31, 2016 Sheet 4 of 8 US 9,354,689 B2

4 Stall Grant Threshold
- Hysterisis region (no change)

-y

»
»

ja Stall Deny Threshold

FIG. 4

US 9,354,689 B2

Sheet 5 of 8

May 31, 2016

U.S. Patent

XcLy
A
IGY
01607 — b
jOJUCD 0N | ugey BOGY vy
oz (S5 7 E] i Nl | gty
o160 HUM [0U0D Jomod pll
aJooun =
Giy ayoes paleys

21607
210D

uoiy qo0i¥y e0Ly

9100 810D 810D

ucivy qcly AR
HA YA A

09y

Atowop
WoIsAg

o
q—

US 9,354,689 B2

Sheet 6 of 8

May 31, 2016

U.S. Patent

9 Ol

4%

068G

ayoen

OovS

44
SNV

SHUM UOIINOBX3

A

804

GiS

aji4 to15160Y
papuaixg

auibug
BpPICHOIND

”

0Ls

\

6es

A+—

aj14 Jo1sibay

/

0eg

605
Al

SHUN pug juoid
S0S
N
BpOos
HONDTUISU]

€05

SUDED
LOROTISY

10§

B
Hoe

-
-
o

U.S. Patent May 31, 2016 Sheet 7 of 8 US 9,354,689 B2

600
IF IF
680, 680,
System

’;gg Agent

=== 650

TCL

659

Display Controller IMC
652 670
630
1 Core LLC
8100 840,
Core LLC
610 <
Core LLC
Core LLC
6100 640n
.
Graphics Engine
620

FIG. 7

US 9,354,689 B2

Sheet 8 of 8

May 31, 2016

U.S. Patent

8 9OI4
3000
/ e o
557 oes 7]]
2OVHOLS VLIVA . SIDIAIAWWOD | | ISNOW / QHYOSAIM
Vel Vil 81z
o1 olany S3DIAZA O 390a18d SNg
9L 867 261
a0 4 6es
8c/
567 567 ¥67 SOIHdVYD
e & b
Y Y
987 887 ™ g 97/
d-d dd dd dd
062
vel 287 - el b4
AHOWIN HOW S HOW AMOWIN
3OO
'D0Yd
087 ! 077
Vo HOSSID0Ud ¥OSSID0Nd
00.L \
w8z avLs

US 9,354,689 B2

1
PROVIDING ENERGY EFFICIENT TURBO
OPERATION OF A PROCESSOR

TECHNICAL FIELD

Embodiments relate to power management of an integrated
circuit.

BACKGROUND

Advances in semiconductor processing and logic design
have permitted an increase in the amount of logic that may be
present on integrated circuit devices. As a result, computer
system configurations have evolved from a single or multiple
integrated circuits in a system to multiple hardware threads,
multiple cores, multiple devices, and/or complete systems on
individual integrated circuits. Additionally, as the density of
integrated circuits has grown, the power requirements for
computing systems (from embedded systems to servers) have
also escalated. Furthermore, software inefficiencies, and its
requirements of hardware, have also caused an increase in
computing device energy consumption. In fact, some studies
indicate that computing devices consume a sizeable percent-
age of the entire electricity supply for a country, such as the
United States of America. As a result, there is a vital need for
energy efficiency and conservation associated with integrated
circuits. These needs will increase as servers, desktop com-
puters, notebooks, ultrabooks, tablets, mobile phones, pro-
cessors, embedded systems, etc. become even more prevalent
(from inclusion in the typical computer, automobiles, and
televisions to biotechnology).

Power and thermal management issues are considerations
in all segments of computer-based systems. While in the
server domain, the cost of electricity drives the need for low
power systems, in mobile systems battery life and thermal
limitations make these issues relevant. Optimizing a system
for maximum performance at minimum power consumption
is usually done using the operating system (OS) or system
software to control hardware elements. Most modern OS’s
use the Advanced Configuration and Power Interface (ACPI)
standard (e.g., Rev. 3.0b, published Oct. 10, 2006) for opti-
mizing the system in these areas.

An ACPI implementation allows a processor core to be in
different power-saving states (also termed low power or idle
states), generally referred to as so-called C1 to Cn states. In
addition to power-saving states, performance states or so-
called P-states are also provided in ACPI. These performance
states may allow control of performance-power levels while a
core is in an active state (C0). In general, multiple P-states
may be available, from PO-PN. There can be a range of higher
frequency/performance states that are generally referred to as
turbo mode.

Some processors expose a large turbo range. When cores
seek to turbo, typically they all are granted the maximum
possible turbo frequency. Not all applications can effectively
use increased core frequency to the same extent for a variety
of reasons. Such differences arise either from the memory
access patterns of the individual applications or due to shared
cache contention arising from the workload mix. Given that
the load line is non-linear in the turbo range, allowing all
cores to be at a highest level of turbo mode can unnecessarily
consume power.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a system in accordance with
one embodiment of the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 is a flow diagram of a method in accordance with
one embodiment of the present invention.

FIG. 3 is a graphical illustration of control of turbo mode
incrementing and decrementing in accordance with an
embodiment of the present invention.

FIG. 4 is a graphical illustration of stall thresholds in accor-
dance with one embodiment of the present invention.

FIG. 5 is a block diagram of a processor in accordance with
an embodiment of the present invention.

FIG. 6 is a block diagram of a processor core in accordance
with an embodiment of the present invention.

FIG. 7 is ablock diagram of a processor in accordance with
another embodiment of the present invention.

FIG. 8 is a block diagram of a system in accordance with
one embodiment of the present invention.

DETAILED DESCRIPTION

Embodiments provide techniques to efficiently enable one
or more cores to independently operate at a selected turbo
mode frequency. Embodiments may be particularly suitable
for a multicore processor in which each of multiple cores can
operate at an independent voltage and frequency point. As
used herein the term “domain” is used to mean a collection of
hardware and/or logic that operates at the same voltage and
frequency point. In addition, a multicore processor can fur-
ther include other non-core processing engines such as fixed
function units, graphics engines, and so forth. Such processor
can include independent domains other than the cores, such as
one or more domains associated with a graphics engine (re-
ferred to herein as a graphics domain) and one or more
domains associated with non-core circuitry, referred to herein
as an uncore or a system agent. Although many implementa-
tions of a multi-domain processor can be formed on a single
semiconductor die, other implementations can be realized by
a multi-chip package in which different domains can be
present on different semiconductor die of a single package.

According to an OS-based ACPI mechanism, a processor
can operate at various power and performance states or levels.
With regard to power states, ACPI specifies different power
consumption states, generally referred to as C1 to Cn states.
When a core is active, it runs at a CO state, and when the core
is idle it may be placed in a core low power state, also called
acore non-zero C-state (e.g., C1-C6 states). When all cores of
a multicore processor are in a core low power state, the
processor can be placed in a package low power state, such as
a package C6 low power state.

In addition to these power states, a processor can further be
configured to operate at one of multiple performance states,
namely from PO to PN. In general, the P1 performance state
may correspond to the highest guaranteed performance state
that can be requested by an OS. In addition to this P1 state, the
OS can further request a higher performance state, namely a
PO state. This PO state may thus be an opportunistic state in
which, when power and thermal budget is available, proces-
sor hardware can configure the processor or at least portions
thereof to operate at a higher than guaranteed frequency. In
many implementations a processor can include multiple so-
called bin frequencies, also referred to herein as turbo mode
frequencies, above this P1 frequency. The highest such fre-
quency may correspond to a maximum turbo frequency
(PO1), which is a highest frequency at which a domain can
operate. This maximum turbo frequency thus is the highest
end of multiple turbo mode frequencies greater than the P1
frequency and corresponds to a maximum non-guaranteed
highest performance level that can be achieved. Note that the
terms “performance state” or “P-state” can be interchange-

US 9,354,689 B2

3

ably used with the term “operating frequency” (or more gen-
erally “frequency”) as the frequency at which a core operates
has a direct correlation to its performance. Thus as used
herein a higher performance state correlates to a higher oper-
ating frequency.

As described herein, embodiments may provide a so-called
energy efficient turbo (EET) algorithm that seeks to ramp a
turbo-seeking core to a frequency at which its stalls for
memory are tolerable, as determined by a configurable
threshold, that is operating efficiently, power burned is pro-
portional to performance obtained. The algorithm also takes
into consideration any user/OS specified energy performance
bias (EPB). In one embodiment, the EPB may be based on
user input to an OS-based user preference menu to indicate a
user’s preference as to a power/performance tradeoff. With a
performance bias, an application running on a core that is not
stalled may be granted a maximum turbo frequency, but with
an energy bias the core may have its frequency incremented
by a unit step. Note that as used herein, a logic unit such as a
core is stalled when all logical threads executing on the unit
are waiting for memory loads/stores.

To effect an EET algorithm, embodiments may detect core
stalls and core active cycles. In one embodiment, the cores
themselves can be configured with one or more sensors, such
as a core activity sensor and a core stall sensor. As will be
described below, in an embodiment these sensors can be used
to determine the proportion of cycles a core is stalled com-
pared to the cycles it is active, termed core-centric unproduc-
tive time. This core-centric unproductive time can be mean-
ingful and reliable regardless of the actual core and uncore
interconnect operating frequencies, and thus serves well to
classify a core as stalled or not using a single threshold. In
various embodiments, this threshold may be configurable and
can be a function of the system EPB.

The EET algorithm periodically analyzes all cores granted
turbo mode to determine whether their frequency should be
increased, decreased or left unchanged based on whether the
core has been classified as stalled or not over the observation
interval. Cores running applications that fit in their private
cache over consecutive observation cycles (provided there
exists power budget and no electrical, thermal or other con-
straints being violated) will reach the maximum turbo fre-
quency. In scenarios where the workload mix changes and
there is increasing cache contention, over time the turbo fre-
quency of the affected cores will be reduced, e.g., steeply if
the system is configured for energy bias or more slowly if
configured with performance bias.

Embodiments may implement the EET algorithm in firm-
ware such as firmware of a power control unit (PCU) of the
processor. This algorithm may take as input hardware sensor
data regarding core stalls and core active cycles and any
user/operating system configured energy performance bias to
adapt the core operating point.

A processor in accordance with one embodiment of the
present invention may include a fully integrated voltage regu-
lation (FIVR) such that per core P-states (PCPS) can be
provided. In this way, cores can be operated at frequencies
independently of each other. Thus embodiments combine this
flexibility, information about core stall and active sensor data,
and configured EPB to determine the operating point for a
core in the turbo range to reap energy performance benefits.

Although the following embodiments are described with
reference to energy conservation and energy efficiency in
specific integrated circuits, such as in computing platforms or
processors, other embodiments are applicable to other types
of integrated circuits and logic devices. Similar techniques
and teachings of embodiments described herein may be

25

30

40

45

4

applied to other types of circuits or semiconductor devices
that may also benefit from better energy efficiency and energy
conservation. For example, the disclosed embodiments are
not limited to any particular type of computer systems, and
may be also used in other devices, such as handheld devices,
systems on chip (SoCs), and embedded applications. Some
examples of handheld devices include cellular phones, Inter-
net protocol devices, digital cameras, personal digital assis-
tants (PDAs), and handheld PCs. Embedded applications
typically include a microcontroller, a digital signal processor
(DSP), network computers (NetPC), set-top boxes, network
hubs, wide area network (WAN) switches, or any other sys-
tem that can perform the functions and operations taught
below. Moreover, the apparatus’, methods, and systems
described herein are not limited to physical computing
devices, but may also relate to software optimizations for
energy conservation and efficiency. As will become readily
apparent in the description below, the embodiments of meth-
ods, apparatus’, and systems described herein (whether in
reference to hardware, firmware, software, or a combination
thereof) are vital to a ‘green technology’ future, such as for
power conservation and energy efficiency in products that
encompass a large portion of the US economy.

Referring now to FIG. 1, shown is a block diagram of a
portion of a system in accordance with an embodiment of the
present invention. As shown in FIG. 1, system 100 may
include various components, including a processor 110 which
as shown is a multicore processor. Processor 110 may be
coupled to a power supply 150 via an external voltage regu-
lator 160, which may perform a first voltage conversion to
provide a primary regulated voltage to processor 110.

As seen, processor 110 may be a single die processor
including multiple cores 120,-120,,. In addition, each core
may be associated with an individual voltage regulator 125 -
125, . Accordingly, a FIVR implementation may be provided
to allow for fine-grained control of voltage and thus power
and performance of each individual core. As such, each core
can operate at an independent voltage and frequency,
enabling great flexibility and affording wide opportunities for
balancing power consumption with performance.

Still referring to FIG. 1, each core can include various
hardware sensors and other circuitry than can provide infor-
mation for use in performing an EET algorithm in accordance
with an embodiment of the present invention. More specifi-
cally as shown in FIG. 1, each core can include a core activity
sensor 122 and a core stall sensor 124.

In one embodiment, core stall sensor 124 may be config-
ured to determine a stall rate of a core which corresponds to a
measure of waiting for stores/loads. This stall rate can be
determined in various manners, ranging from a simple count
of cycles for which the core is stalled to more complicated
manners. Table 1 shows pseudo code for a core stall sensor in
accordance with one embodiment of the present invention.

TABLE 1

If (all threads on core waiting for either a load/store) {
If (wait > stall__wait_ threshold) { // cache miss latency or any
significant delay core_ stall__count ++;
¥
¥

In one embodiment, core activity sensor 122 may be con-
figured to determine an activity rate of a core. This activity
rate can be determined in various manners, ranging from a
simple count of cycles for which the core is active to more
complicated manners. In one embodiment, core activity sen-

US 9,354,689 B2

5

sor 122 can be configured to count cycles in which one or
more threads on a core is in an active CO state. Without loss of
generality assume a physical core is associated with two
logical processors or hardware threads, then the core has an
active or CO value that equals the time when one or more
associated logical cores is active a CO state during the obser-
vation window.

Still referring to FIG. 1, additional components may be
present within the processor including an input/output inter-
face 132, another interface 134, and an integrated memory
controller 136. As seen, each of these components may be
powered by another integrated voltage regulator 125_. In one
embodiment, interface 132 may be in accordance with the
Intel® Quick Path Interconnect (QPI) protocol, which pro-
vides for point-to-point (PtP) links in a cache coherent pro-
tocol that includes multiple layers including a physical layer,
a link layer and a protocol layer. In turn, interface 134 may be
in accordance with a Peripheral Component Interconnect
Express (PCIe™) specification, e.g., the PCI Express™
Specification Base Specification version 2.0 (published Jan.
17, 2007). While not shown for ease of illustration, under-
stand that additional components may be present within pro-
cessor 110 such as uncore logic, a power control unit, and
other components such as internal memories, e.g., one or
more levels of a cache memory hierarchy and so forth. Fur-
thermore, while shown in the implementation of FIG. 1 with
an integrated voltage regulator, embodiments are not so lim-
ited.

Referring now to FIG. 2, shown is a flow diagram of a
method for performing energy efficient turbo analysis in
accordance with an embodiment of the present invention. As
seen in FIG. 2, method 200 may begin by determining
whether a given core is in a turbo mode (diamond 210).
Although the scope of the present invention is not limited in
this regard, in one embodiment this determination may be
made by logic such as a turbo mode control logic of a PCU.
This determination may be based on whether a given core is
currently in a turbo mode or has been granted permission to
enter into a turbo mode. If the core is not granted turbo mode,
the algorithm is not performed for that core and control imme-
diately loops back on diamond 210.

Instead, for a turbo mode core, control passes to diamond
215 where it can be determined whether the number of core
active cycles over the last observation interval is greater than
a minimum threshold. Although the scope of the present
invention is not limited in this regard, in one embodiment this
number may be between approximately 20-40%. Thus if the
core is sleeping for most of the time, it is not worth bumping
up/down in turbo frequency. Power savings occur regardless
because the core is power gated. Further, the core may lose its
turbo status if it remains relatively inactive. As such, if the
number of active cycles is below this threshold, this indicates
that the core is either in a low power state or has performed
very few operations. As such, the expense and time associated
with making the determinations of the algorithm may not be
worth the effort and thus no further analysis is performed for
such core. Thus a core is considered active for purposes of
analyzing the core under the EET algorithm if and only if it is
above a minimum percentage number of cycles active as
determined at the lowest core operating frequency running
against an uncore interconnect operating at its lowest fre-
quency. Using the lowest frequency enables use of a single
threshold value that is meaningful across the range of opera-
tional frequencies of core and uncore.

Still referring to FIG. 2, control passes to block 220 where
the current performance state of the core can be obtained,
along with a core stall count and an energy performance bias

25

30

35

40

45

55

6

value for the core. In some embodiments, all this information
may be present in storages within the PCU such as a P-state
mask that stores information regarding the current P-state of
each core, a stall storage that stores core stall information
from the cores, and an energy performance storage that stores
an energy performance bias, which in one embodiment may
be on a per core basis.

In one embodiment the algorithm may receive (or may
calculate) a bias value that can be based on the energy per-
formance bias, which may include individual bias values for
each logical core associated with a physical core. In one
embodiment, these bias values may be 4-bit values dynami-
cally configured by the operating system. To obtain a bias
value for use in the EET algorithm, a minimum of the bias
values across all logical cores associated with physical core
can be obtained, e.g., in accordance with Table 2 below.

TABLE 2

if (bias <= 3) — performance bias
else if (bias > 11) — energy bias
else — balance bias

Still referring to FIG. 2, control passes to diamond 230
where it can be determined whether the core stall count is
greater than or equal to a first stall threshold, also referred to
herein as a deny threshold. This stall threshold may be set at
arelatively high level to indicate that a relatively high number
of stalls has occurred during the last observation interval. In
some embodiments, this first stall threshold may be set
between approximately 50% and 60%. If the core stall count
is greater than or equal to this threshold, control passes to
block 240 where the current performance state of the core
may be reduced based on the energy performance bias to thus
obtain a candidate performance state for this core. Note this
candidate performance state may be at a level determined
according to the EET algorithm, but it is not committed (if at
all) to the core until the further operations of the algorithm of
FIG. 2 are performed. Thus, the core may be controlled to
operate at a decreased frequency from a current performance
state if stalls exceed a stall deny threshold.

Note that different amounts of reduction of the perfor-
mance state can be determined based on the energy perfor-
mance bias. That is, as shown in FIG. 3, which is a graphical
illustration of control functions for increasing and decreasing
operating frequency in accordance with one embodiment of
the present invention, when a system is configured for per-
formance, relatively small reductions in the performance
state may be made. Instead, when a system is configured for
energy savings, a relatively large change in performance state
can occur. Of course a balanced policy which seeks to realize
a balance between these two policies can provide an interme-
diate measure of reduction.

Still referring to FIG. 2, if instead at diamond 230 it is
determined that the core stall count is not greater than or equal
to this first stall threshold, control passes to diamond 250
where it can be determined whether the core stall count is less
than or equal to a second stall threshold, also referred to
herein as a stall grant threshold. This second stall threshold
may be at alower level, e.g., between approximately 10% and
20%. If so, this means that relatively few stalls are occurring
on the core and thus the core is efficiently using its power
consumption. Accordingly, control passes to block 260 where
the current performance state can be increased based on the
energy bias to obtain a candidate performance state. Thus in
various embodiments, a core may be controlled to operate at

US 9,354,689 B2

7

an increased frequency from a current performance state if its
stalls are less than a stall grant threshold.

As above with performance state decrements, these incre-
ments may be of a varying degree depending on the energy
performance bias, as also seen in FIG. 3. Thus a greater
performance state can be rapidly selected when a core is set
for a performance bias and instead when a core is set for
energy bias, a slower increase in the candidate performance
state may occur.

Embodiments thus not only determine whether to incre-
ment/decrement/maintain core frequency but also by how
much to modify the frequency. This is controlled by the
energy performance bias configured by the user/operating
system, in one embodiment. If the bias is performance, the
frequency increase is more aggressive, whereas with an
energy bias the frequency increase is more conservative. As
seen in FIG. 3, with an energy bias, the increase is a one step
up, where a step is any defined quantum, while in perfor-
mance mode an increment change thus travels immediately
(rockets) to the maximum possible frequency. In balanced
mode the increase bridges the gap between the current oper-
ating point (current frequency) and the maximum possible
frequency in a geometric manner. When decreasing a mirror
image of this reasoning is applied, substituting maximum
possible with minimum possible, as seen in FIG. 3.

As seen in FIG. 4, which is a graphical illustration of
thresholds in accordance with one embodiment of the present
invention, a first, high threshold may correspond to a stall
deny threshold such that if greater than this threshold number
of stalls (or stall rate) occurs during an observation interval,
the core frequency can be reduced. Instead, when the number
of'stalls (or stall rate) occurring during an observation cycle is
below a second, lower threshold, also referred to herein as a
stall grant threshold, the core can be granted an increased
frequency. In other conditions, namely when the number of
stalls is between these two thresholds, which corresponds to
a hysteresis range, no frequency update is to be performed.

Referring back to FIG. 2, if the current core stall count is
not greater than or equal to this second stall threshold, control
passes from diamond 250 to block 270 where the candidate
performance state can be set equal to the current performance
state.

From all of blocks 240, 260 and 270 control passes to block
280 where an updated performance state can be determined.
More specifically, this updated performance state can be
based on the candidate power state along with various con-
straints on the processor. Although the scope of the present
invention is not limited in this regard, these constraints may
include a thermal constraint, an electrical design point con-
straint, and a stock keeping unit (SKU)-based constraint,
among others. In one embodiment, this determination can be
realized by selecting the MIN of all the constraint-based
performance states and the newly determined candidate per-
formance state.

Then based on this determination, control passes to block
290 where the updated performance state can be applied to the
given core. Note that if there is no performance state change,
no communication may occur between the PCU and the core
at this time. As seen, method 200 can be performed iteratively
for each active core. Furthermore, this algorithm can be per-
formed according to a given observation interval, which can
be controllably selected, e.g., by firmware. Although shown
at this high level in the embodiment of FIG. 2, understand the
scope of the present invention is not limited in this regard.

Thususing the EET algorithm of FIG. 2, a power controller
of'a multicore processor can control operating frequencies in
the turbo range of the cores independently. For example, the

10

15

20

25

30

35

40

45

50

55

60

65

8

controller can prevent one core from executing at a requested
turbo mode frequency if it has a stall rate greater than the stall
deny threshold, while concurrently allowing a second core to
execute at a requested turbo mode frequency if this core has a
stall rate less than the stall grant threshold.

Also understand that an EET algorithm may have wide
flexibility as it uses configurable values for thresholds and the
periodicity with which it revisits turbo-granted cores. Further,
the configuration can be a function of the energy performance
bias specified. The arithmetic expression used to adapt the
core frequencies can be a function of the core stalls. A func-
tion is reasonable as long as it meets the following caveats:
core frequency monotonically rises under favorable stall con-
ditions and monotonically falls under unfavorable stall con-
ditions.

As to the thresholds, assume a customer with a computer
system including a processor in accordance with an embodi-
ment of the present invention and a given OS runs their own
application and has their own power, performance and quality
of service needs. These values will be a function of the EPB
that the user/OS controls. In some embodiments, there may
be a graphical user interface (e.g., dashboard) or other hooks
to set these thresholds based on EPB. Note that each physical
core may have an EPB corresponding to the minimum of its
logical core EPBs. Referring now to Table 3 are example
threshold values for different EPBs. Note that these values
can be tuned post-silicon using benchmarks.

TABLE 3
Active Deny Threshold Grant Threshold
EPB Value Threshold (first) (second)
Energy 20 50 10
Balanced 20 50 10
performance 20 60 20

In some embodiments, a processor may provide predeter-
mined values for performance, balanced and energy perfor-
mance bias. In some embodiments, the second (grant) thresh-
old may be less than the first (deny) threshold by 2 to 8 times
or more. In one embodiment, these are real numbers, repre-
senting a fraction of observation window time.

Without loss of generality, Table 4 below is pseudocode of
an implementation of an EET algorithm in accordance with
one embodiment of the present invention.

TABLE 4

Every Revisit Period { // period configurable, about 1 millisecond
P1 = MAXIMUM__GUARANTEED_ RATIO; // SKU based constant
MAXIMUM__TURBO; // SKU based constant
GRANT_K // a low configurable constant 0 < GRANT_K < 1.0
DENY_ K // a high configurable constant; DENY__ K > 2 *
GRANT_K
//0<DENY_K<1.0
for each core granted turbo {
if (core__active__cycles >= min__activity_ threshold) { ;
// configurable
//Demote or promote or no-change?
curr_pstate ; // retrieve current pstate of core
core_stall_ cycles; // read sensor data from core
bias ;// retrieve energy-perf bias of core
if (core_stall_cycles >= core__active__cycles * DENY_ K) {
// demote
if (energy(bias)) { // energy bias
new_ Pstate = P1 ; // exit Turbo
} else if (balance(bias)) {
new_ Pstate = ((P1 + curr__pstate)/2 ; // less Turbo
} else { // performance bias, a little less turbo
new_ Pstate = maximum(curr_ pstate — 1, P1)

US 9,354,689 B2

9
TABLE 4-continued

} else if (core_stall__cycles >= core__active__cycles *
GRANT_XK)
{// promote .. further
if (energy(bias)) { ; // slow increase
new_ Pstate = min (P1 + 1, MAXIMUM_ TURBO)
} else if (balanced(bias)) { ; // faster increase
new_ Pstate = (MAXIMUM_ TURBO +
curr__pstate)/2
} else { // performance bias, shoot up to maximum turbo
new__Pstate = MAXIMUM__TURBO;

}// else in hysterisis region, no change
// apply all constraints
new__pstate = min(new__pstate,
min(Electrical design point, Thermal, SKU, other
limits));
} // if_active
} // for-each loop

Note in Table 4 that after determination of a candidate
performance state (new_pstate), a minimum function is
applied, which includes electrical design point consider-
ations, which is applied last because it depends on the number
of cores seeking to turbo and their degree of turbo. Another
parameter of the minimum function is a thermal constraint, as
past activity and environment affects processor temperature
and thus how much the cores may turbo consequently without
melt down.

Referring now to FIG. 5, shown is a block diagram of a
processor in accordance with an embodiment of the present
invention. As shown in FIG. 5, processor 400 may be a mul-
ticore processor including a plurality of cores 410,-410,,. In
one embodiment, each such core may be configured to oper-
ate at multiple voltages and/or frequencies. In addition, each
core may be independently controlled to operate at a selected
voltage and/or frequency, as discussed above. To this end,
each core may be associated with a corresponding voltage
regulator 412a-412n. While not shown for ease of illustration,
understand that each core 410 can include a core activity
sensor and a core stall sensor. The various cores may be
coupled via an interconnect 415 to an uncore or system agent
logic 420 that includes various components. As seen, the
uncore 420 may include a shared cache 430 which may be a
last level cache. In addition, the uncore may include an inte-
grated memory controller 440, various interfaces 450 and a
power control unit 455.

In various embodiments, power control unit 455 may be in
communication with OS power management code, effected
by the OS writing to a machine specific register (MSR), one
per logical processor. For example, based on a request
received from the OS and information regarding the work-
loads being processed by the cores, power control unit 455
may use included turbo control logic 457 that in one embodi-
ment may execute firmware to realize the algorithm set forth
in FIG. 2. In this way turbo control logic 457 can determine an
appropriate combination of voltage and frequency for oper-
ating each of the cores in turbo mode including controlling a
turbo frequency for cores in a turbo mode based on core
activity level. Note that non-turbo cores may operate at an
OS-selected P-state. Based on the above-described informa-
tion, power control unit 455 can dynamically and indepen-
dently control a frequency and/or voltage to one or more cores
in light of the core’s activity levels.

With further reference to FIG. 5, processor 400 may com-
municate with a system memory 460, e.g., via a memory bus.
In addition, by interfaces 450, connection can be made to
various off-chip components such as peripheral devices, mass

10

20

25

30

35

40

45

50

55

60

65

10

storage and so forth. While shown with this particular imple-
mentation in the embodiment of FIG. 5, the scope of the
present invention is not limited in this regard.

Referring now to FIG. 6, shown is a block diagram of a
processor core in accordance with one embodiment of the
present invention. As shown in FIG. 6, processor core 500
may be a multi-stage pipelined out-of-order processor. As
shown in FIG. 6, core 500 may operate at various voltages and
frequencies as a result of integrated voltage regulator 509. In
various embodiments, this regulator may receive an incoming
voltage signal, e.g., from an external voltage regulator and
may further receive one or more control signals, e.g., from
uncore logic coupled to core 500.

As seen in FIG. 6, core 500 includes front end units 510,
which may be used to fetch instructions to be executed and
prepare them for use later in the processor. For example, front
end units 510 may include a fetch unit 501, an instruction
cache 503, and an instruction decoder 505. In some imple-
mentations, front end units 510 may further include a trace
cache, along with microcode storage as well as a micro-
operation storage. Fetch unit 501 may fetch macro-instruc-
tions, e.g., from memory or instruction cache 503, and feed
them to instruction decoder 505 to decode them into primi-
tives, i.e., micro-operations for execution by the processor.

Coupled between front end units 510 and execution units
520 is an out-of-order (OOO) engine 515 that may be used to
receive the micro-instructions and prepare them for execu-
tion. More specifically OOO engine 515 may include various
buffers to re-order micro-instruction flow and allocate vari-
ous resources needed for execution, as well as to provide
renaming of logical registers onto storage locations within
various register files such as register file 530 and extended
register file 535. Register file 530 may include separate reg-
ister files for integer and floating point operations. Extended
register file 535 may provide storage for vector-sized units,
e.g., 256 or 512 bits per register.

Various resources may be present in execution units 520,
including, for example, various integer, floating point, and
single instruction multiple data (SIMD) logic units, among
other specialized hardware. For example, such execution
units may include one or more arithmetic logic units (ALUs)
522, among other such execution units.

Results from the execution units may be provided to retire-
ment logic, namely a reorder buffer (ROB) 540. More spe-
cifically, ROB 540 may include various arrays and logic to
receive information associated with instructions that are
executed. This information is then examined by ROB 540 to
determine whether the instructions can be validly retired and
result data committed to the architectural state of the proces-
sor, or whether one or more exceptions occurred that prevent
a proper retirement of the instructions. Of course, ROB 540
may handle other operations associated with retirement.

As shown in FIG. 6, ROB 540 is coupled to a cache 550
which in one embodiment may be a low level cache (e.g., an
L1 cache), although the scope of the present invention is not
limited in this regard. Also, execution units 520 can be
directly coupled to cache 550. From cache 550, data commu-
nication may occur with higher level caches, system memory
and so forth. While shown with this high level in the embodi-
ment of FIG. 6, understand the scope of the present invention
is not limited in this regard. For example, while the imple-
mentation of FIG. 6 is with regard to an out-of-order machine
such as of a so-called x86 instruction set architecture (ISA),
the scope of the present invention is not limited in this regard.
That is, other embodiments may be implemented in an in-
order processor, a reduced instruction set computing (RISC)
processor such as an ARM-based processor, or a processor of

US 9,354,689 B2

11

another type of ISA that can emulate instructions and opera-
tions of a different ISA via an emulation engine and associ-
ated logic circuitry.

Referring now to FIG. 7, shown is a block diagram of a
multicore processor in accordance with another embodiment
of'the present invention. As shown in the embodiment of FIG.
7, processor 600 includes multiple domains. Specifically, a
core domain 610 can include a plurality of cores 610,-610z,
a graphics domain 620 can include one or more graphics
engines, and a system agent domain 650 may further be
present. In various embodiments, system agent domain 650
may handle power control events and power management
such that individual units of domains 610 and 620 such as
cores and/or graphics engines can be controlled to indepen-
dently dynamically operate at an appropriate turbo mode
frequency in light of the activity (or inactivity) occurring in
the given unit. Each of domains 610 and 620 may operate at
different voltage and/or power, and furthermore the indi-
vidual units within the domains each may operate at an inde-
pendent frequency and voltage. Note that while only shown
with three domains, understand the scope of the present
invention is not limited in this regard and additional domains
can be present in other embodiments.

In general, each core 610 may further include low level
caches in addition to various execution units and additional
processing elements. In turn, the various cores may be
coupled to each other and to a shared cache memory formed
ofaplurality of units of a LLC 640,-640,,. In various embodi-
ments, LL.C 640 may be shared amongst the cores and the
graphics engine, as well as various media processing cir-
cuitry. As seen, a ring interconnect 630 thus couples the cores
together, and provides interconnection between the cores,
graphics domain 620 and system agent circuitry 650. In one
embodiment, interconnect 630 can be part of the core domain.
However in other embodiments the ring interconnect can be
of its own domain.

As further seen, system agent domain 650 may include
display controller 652 which may provide control of and an
interface to an associated display. As further seen, system
agent domain 650 may include a power control unit 655
which can include a turbo control logic 659 in accordance
with an embodiment of the present invention to control a
turbo mode frequency of the cores individually based on
activity information of the corresponding core. In various
embodiments, this logic may execute the algorithm described
above in FIG. 2.

As further seen in FIG. 7, processor 600 can further include
an integrated memory controller (IMC) 670 that can provide
for an interface to a system memory, such as a dynamic
random access memory (DRAM). Multiple interfaces 680,-
680,, may be present to enable interconnection between the
processor and other circuitry. For example, in one embodi-
ment at least one direct media interface (DMI) interface may
be provided as well as one or more Peripheral Component
Interconnect Express (PCIe™) interfaces. Still further, to
provide for communications between other agents such as
additional processors or other circuitry, one or more inter-
faces in accordance with an Intel® Quick Path Interconnect
(QPI) protocol may also be provided. Although shown at this
high level in the embodiment of FIG. 7, understand the scope
of the present invention is not limited in this regard.

Embodiments may be implemented in many different sys-
tem types. Referring now to FIG. 8, shown is a block diagram
of'a system in accordance with an embodiment of the present
invention. As shown in FIG. 8, multiprocessor system 700 is
a point-to-point interconnect system, and includes a first pro-
cessor 770 and a second processor 780 coupled via a point-

10

15

20

25

30

35

40

45

50

55

60

65

12

to-point interconnect 750. As shown in FIG. 8, each of pro-
cessors 770 and 780 may be multicore processors, including
first and second processor cores (i.e., processor cores 774a
and 7745 and processor cores 784a and 784b), although
potentially many more cores may be present in the proces-
sors. Each of the processors can include a PCU or other logic
to perform dynamic control of a permitted operating fre-
quency greater than a guaranteed operating frequency based
on core activity occurring to efficiently consume energy, as
described herein.

Still referring to FIG. 8, first processor 770 further includes
amemory controller hub (MCH) 772 and point-to-point (P-P)
interfaces 776 and 778. Similarly, second processor 780
includes a MCH 782 and P-P interfaces 786 and 788. As
shown in FIG. 8, MCH’s 772 and 782 couple the processors
to respective memories, namely a memory 732 and a memory
734, which may be portions of system memory (e.g., DRAM)
locally attached to the respective processors. First processor
770 and second processor 780 may be coupled to a chipset
790 via P-P interconnects 752 and 754, respectively. As
shown in FIG. 8, chipset 790 includes P-P interfaces 794 and
798.

Furthermore, chipset 790 includes an interface 792 to
couple chipset 790 with a high performance graphics engine
738, by a P-P interconnect 739. In turn, chipset 790 may be
coupled to a first bus 716 via an interface 796. As shown in
FIG. 8, various input/output (I/O) devices 714 may be
coupled to first bus 716, along with a bus bridge 718 which
couples first bus 716 to a second bus 720. Various devices may
be coupled to second bus 720 including, for example, a key-
board/mouse 722, communication devices 726 and a data
storage unit 728 such as a disk drive or other mass storage
device which may include code 730, in one embodiment.
Further, an audio /O 724 may be coupled to second bus 720.
Embodiments can be incorporated into other types of systems
including mobile devices such as a smart cellular telephone,
tablet computer, netbook, ultrabook, or so forth.

Embodiments thus enable distributing power more effec-
tively in the turbo range on a per core basis. This is particu-
larly so as in the turbo range power is non-linear, and a better
power performance foot print may be achieved using consid-
ered operating point selection. Embodiments may also pro-
vide for scalability, as it can be used with increasing core
counts and increasing number of threads per core. As such a
processor in accordance with an embodiment of the present
invention may more effectively use its turbo budget, prefer-
entially allocating it to cores that can make more effective use
of it as opposed to others that cannot, and thus facilitating
greater single threaded performance.

Embodiments also seek to run a core at a frequency deemed
useful for the application running on the core based on core
stall count metrics. A frequency adapter in accordance with
an embodiment of the present invention may receive as one of
its parameters user/operating system specified energy perfor-
mance bias on each active thread, enabling customized
behavior for data centers and high performance needs, thus
improving overall product energy performance metrics.

According to one aspect, the present invention includes a
system with a processor including multiple cores and voltage
regulators each to independently provide a voltage to at least
one of the cores, along with a memory such as a dynamic
random access memory (DRAM) coupled to the processor.
Either included in the processor or coupled thereto may be a
PCU to control the voltage regulators to provide independent
voltages to at least some of the cores. In addition, the PCU
may include means for controlling the core frequencies inde-
pendently. In one such embodiment, this means can be imple-

US 9,354,689 B2

13

mented as a turbo mode control logic. In addition the means
can further enable a given core to operate at an increased turbo
mode frequency if a core stall metric of the core at a current
turbo mode frequency (that is below the increased turbo mode
frequency) is less than a stall threshold.

In addition, this PCU logic can further perform various
methods to efficiently control turbo mode of the processor. As
an example, the method can include obtaining a current per-
formance state of a core, a core stall count of the core during
an observation interval, and an energy performance bias for
the core, then determining if the core stall count is at least
equal to a stall threshold and if so, reducing the current
performance state of the core based on the energy perfor-
mance bias to obtain a candidate performance state. From this
information, an updated performance state can be determined
and applied to the core.

Embodiments may be used in many different types of
systems. For example, in one embodiment a communication
device can be arranged to perform the various methods and
techniques described herein. Of course, the scope of the
present invention is not limited to a communication device,
and instead other embodiments can be directed to other types
of apparatus for processing instructions, or one or more
machine readable media including instructions that in
response to being executed on a computing device, cause the
device to carry out one or more of the methods and techniques
described herein.

Embodiments may be implemented in code and may be
stored on a non-transitory storage medium having stored
thereon instructions which can be used to program a system to
perform the instructions. The storage medium may include,
but is not limited to, any type of disk including floppy disks,
optical disks, solid state drives (SSDs), compact disk read-
only memories (CD-ROMs), compact disk rewritables (CD-
RWs), and magneto-optical disks, semiconductor devices
such as read-only memories (ROMs), random access memo-
ries (RAMs) such as dynamic random access memories
(DRAMs), static random access memories (SRAMs), eras-
able programmable read-only memories (EPROMs), flash
memories, electrically erasable programmable read-only
memories (EEPROMs), magnetic or optical cards, or any
other type of media suitable for storing electronic instruc-
tions.

While the present invention has been described with
respect to a limited number of embodiments, those skilled in
the art will appreciate numerous modifications and variations
therefrom. It is intended that the appended claims cover all
such modifications and variations as fall within the true spirit
and scope of this present invention.

What is claimed is:

1. A processor comprising:

a plurality of cores to independently execute instructions;

and

a power controller to control a frequency at which the

processor is to operate, the power controller including
first logic to prevent a first core of the plurality of cores
from execution at a requested turbo mode frequency if
the first core has a stall rate greater than a first stall
threshold, the stall rate of the first core corresponding to
a rate at which the first core has waited for memory
loads/stores, and concurrently allow a second core of the
plurality of cores to execute at a requested turbo mode
frequency if the second core has a stall rate less than a
second stall threshold, wherein the first logic is to gen-
erate a candidate performance state at a first lower fre-
quency if an energy performance bias value is at an
energy bias and ata second lower frequency if the energy

20

25

30

40

45

50

14

performance bias value is at a performance bias, the
second lower frequency greater than the first lower fre-
quency.

2. The processor of claim 1, wherein the first logic is to
reduce a current performance state for the first core based on
the energy performance bias value to generate the candidate
performance state if the stall rate of the first core is greater
than the first stall threshold.

3. The processor of claim 2, wherein the first logic is to
determine an updated performance state for the first core
based on the candidate performance state and a plurality of
constraints on the processor.

4. The processor of claim 3, wherein the first logic is to
apply the updated performance state to the first core.

5. The processor of claim 2, wherein the first logic is to
increase a current performance state for the second core based
on the energy performance bias value to generate the candi-
date performance state if the stall rate of the second core is
less than the second stall threshold.

6. The processor of claim 1, wherein the first logic is to
maintain a current turbo mode frequency ofthe first core if the
stall rate of the first core is between the first and second stall
thresholds.

7. A method comprising: obtaining a current performance
state of a first core of a multicore processor, a core stall count
of'the first core during a first observation interval correspond-
ing to cycles in which the first core was waiting for memory
loads/stores, and an energy performance bias for the first
core; determining if the core stall count is at least equal to a
first stall threshold;

if so, reducing the current performance state of the first

core based on the energy performance bias to obtain a
candidate performance state; and determining if core
active cycles of the first core during the first observation
interval are less than a minimum threshold, and if so
maintaining the current performance state of the first
core for a next observation interval without further
analysis.

8. The method of claim 7, further comprising determining
an updated performance state based on the candidate perfor-
mance state and a plurality of processor constraint param-
eters.

9. The method of claim 8, further comprising applying the
updated performance state to the first core.

10. The method of claim 7, further comprising determining
if the current performance state of the first core is not in or not
granted turbo mode, and if so maintaining the current perfor-
mance state of the first core for a next observation interval
without further analysis.

11. The method of claim 7, further comprising if the core
stall count is not at least equal to the first stall threshold,
determining if the core stall count is less than or equal to a
second stall threshold, and if so increasing the current perfor-
mance state of the first core based on the energy performance
bias to obtain the candidate performance state.

12. The method of claim 11, further comprising if the core
stall count is between the first and second stall thresholds,
obtaining the candidate performance state from the current
performance state of the first core.

13. A system comprising: a processor including a plurality
of cores, a plurality of integrated voltage regulators each to
independently provide a voltage to at least one of the plurality
of cores, and a power control unit (PCU) to control the plu-
rality of integrated voltage regulators to provide independent
voltages to at least some of the plurality of cores, the PCU
comprising a turbo mode control logic to control a frequency
of the plurality of cores independently and to enable a first

US 9,354,689 B2

15

core of the plurality of cores to operate at an increased turbo
mode frequency if a core stall metric of the first core at a
current turbo mode frequency below the increased turbo
mode frequency is less than a second stall threshold, wherein
the turbo mode control logic is to enable a second core of the
plurality of cores to operate at a reduced turbo mode fre-
quency if a core stall metric of the second core at a current
turbo mode frequency above the reduced turbo mode fre-
quency is at least equal to a first stall threshold, wherein the
first stall threshold is greater than the second stall threshold;
and

adynamic random access memory (DRAM) coupled to the

processor.

14. The system of claim 13, wherein the PCU is to receive
the core stall metric of the first core from a stall sensor of the
first core.

15. The system of claim 13, wherein the turbo mode control
logic is to increase a turbo mode frequency of the first core at
a faster rate when the processor is in a performance mode than
when the processor is in an energy mode.

16. The system of claim 15, wherein the turbo mode control
logic is to decrease the turbo mode frequency of the first core
at a faster rate when the processor is in the energy mode than
when the processor is in the performance mode.

17. The system of claim 13, wherein the turbo mode control
logic is to determine an updated performance state using a
candidate performance state based on the core stall metric and
a plurality of processor constraint parameters, and apply the
updated performance state to the first core.

#* #* #* #* #*

10

15

20

25

30

16

